4^-3x=(1/8)^-x

Simple and best practice solution for 4^-3x=(1/8)^-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4^-3x=(1/8)^-x equation:



4^-3x=(1/8)^-x
We move all terms to the left:
4^-3x-((1/8)^-x)=0
Domain of the equation: 8)^-x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-3x-((+1/8)^-x)+4^=0
We add all the numbers together, and all the variables
-3x-((+1/8)^-x)=0
We multiply all the terms by the denominator
-3x*8)^-x)-((+1=0
Wy multiply elements
-24x^2+1=0
a = -24; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-24)·1
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-24}=\frac{0-4\sqrt{6}}{-48} =-\frac{4\sqrt{6}}{-48} =-\frac{\sqrt{6}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-24}=\frac{0+4\sqrt{6}}{-48} =\frac{4\sqrt{6}}{-48} =\frac{\sqrt{6}}{-12} $

See similar equations:

| 4^2n+2=4^-3n | | 0.1(x+500)=5,000 | | z/33=5/4 | | (3x-4)/7=x-2 | | 1/3(x-3)+2/3=4x-3/6 | | 0.3k+2.1=0.4k | | 3x-4/7=x-2 | | (x-9)=83 | | 72-288x^2=0 | | F(x)=2x/5x2-20 | | F(x)=(2x)/(5x^2-20) | | 7(x+5=28 | | y’’–y’+7y=0 | | 7x-11/8=4x-3/12 | | 2=-1/2t^2+5/2t | | -2n+13/6n=1/3 | | 132=1/2t^2+5/2t | | M=1/2t^2+5/2t | | 7x-13=3x-3 | | B(x)=0.1x2+3x+50 | | 6/k+8=5 | | 3(2x+4)-2(2x-3)=4x+8-2x | | X2+9=8x | | ¹2-5h=h+6 | | 2+4x-5=2x+3 | | (x-2)(x^2+7x+10)=0 | | u-7=-12 | | 0.7(1.1)=y=340 | | -4|w|=0 | | 49.5=x•33 | | X3-3x2+3=0 | | 8a^2-48a-170=0 |

Equations solver categories